The neural cell adhesion molecule (NCAM) associates with and signals through p21-activated kinase 1 (Pak1).

نویسندگان

  • Shen Li
  • Iryna Leshchyns'ka
  • Yana Chernyshova
  • Melitta Schachner
  • Vladimir Sytnyk
چکیده

The Neural cell adhesion molecule (NCAM) plays an important role in regulation of nervous system development. To expand our understanding of the molecular mechanisms via which NCAM influences differentiation of neurons, we used a yeast two-hybrid screening to search for new binding partners of NCAM and identified p21-activated kinase 1 (Pak1). We show that NCAM interacts with Pak1 in growth cones of neurons. The autophosphorylation and activity of Pak1 were enhanced when isolated growth cones were incubated with NCAM function triggering antibodies, which mimic the interaction between NCAM and its extracellular ligands. The association of Pak1 with cell membranes, the efficiency of Pak1 binding to its activators, and Pak1 activity were inhibited in brains of NCAM-deficient mice. NCAM-dependent Pak1 activation was abolished after lipid raft disruption, suggesting that NCAM promotes Pak1 activation in the lipid raft environment. Phosphorylation of the downstream Pak1 effectors LIMK1 and cofilin was reduced in growth cones from NCAM-deficient neurons, which was accompanied by decreased levels of filamentous actin and inhibited filopodium mobility in the growth cones. Dominant-negative Pak1 inhibited and constitutively active Pak1 enhanced the ability of neurons to increase neurite outgrowth in response to the extracellular ligands of NCAM. Our combined observations thus indicate that NCAM activates Pak1 to drive actin polymerization to promote neuronal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinesin-1 promotes post-Golgi trafficking of NCAM140 and NCAM180 to the cell surface.

The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macro...

متن کامل

The neural cell adhesion molecule associates with and signals through p21-activated kinase 1 to regulate neuronal growth cone morphology in mice (Mus musculus Linnaeus, 1758) Dissertation von

............................................................................................................................. 4 ZUSAMMENFASSUNG.......................................................................................................... 5

متن کامل

Unique catalytic activities and scaffolding of p21 activated kinase-1 in cardiovascular signaling

P21 activated kinase-1 (Pak1) has diverse functions in mammalian cells. Although a large number of phosphoproteins have been designated as Pak1 substrates from in vitro studies, emerging evidence has indicated that Pak1 may function as a signaling molecule through a unique molecular mechanism - scaffolding. By scaffolding, Pak1 delivers signals through an auto-phosphorylation-induced conformati...

متن کامل

Identification of novel cytosolic binding partners of the neural cell adhesion molecule NCAM and functional analysis of these interactions

The neural cell adhesion molecule (NCAM) plays an important role during brain development and in adult brain. NCAM functions through interactions with several proteins leading to intracellular signal transduction pathways ultimately causing cellular proliferation, differentiation, migration, survival, and neuritogenesis. This thesis aimed for the identification of novel, yet unknown intracellul...

متن کامل

Morphometrical Study of Polysialylated Neural Cell Adhesion Molecule Positive Cells in Rat Pups Hippocampus Following Induction of Seizure during Pregnancy

Background:The polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in developing brain. Fetal brain damage is caused by different conditions such as seizure and hypoxia. The present study was designed to investigate the effect of maternal seizures on the number of PSA-NCAM positive cells in pup's hippocampus. Methods: Female Wistar rats were divided into four groups: (a) kindle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2013